Code: EC3T3

II B.Tech - I Semester – Regular Examinations – December 2015

SIGNAL AND SYSTEMS (ELECTRONICS AND COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Explain the properties of unit impulse function.
 - b) Determine whether the following system is stable or not $h(t) = 5 e^{-2t} u(t)$.
 - c) Determine whether the following signal is energy signal, power signal or neither x(t)=t u(t).
 - d) State frequency shifting and time scaling properties of Fourier transform.
 - e) State the necessary and sufficient conditions for the existence of Fourier series of a periodic signal.
 - f) Find the ROC of Laplace transform of the signal $x(t) = t e^{-2t}$. u(t).
 - g) If u(t) denotes the unit step, then what is the Laplace transform of $\frac{d^2u(t)}{dt^2}$.
 - h) Determine the signal x(n) for the given Fourier transform $X(j\omega)=e^{-j\omega/2}$ for $-\pi\leq\omega\leq\pi$.
 - i) State the linearity and time shifting properties of DFS.
 - j) Find the Z- transform of $x(n) = 2^n u(n 2)$.

k) A real-valued signal x(t) is known to be uniquely determined by its samples when the sampling frequency is $\omega_s = 10,000\pi$. For what values of ω , X(j ω) guaranteed to be zero?

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) Check whether the following system is

- i) Static or Dynamic
- ii) Linear or Nonlinear
- iii) Time variant or Time invariant

$$\frac{d^3y(t)}{dt^3} + 5\frac{d^2y(t)}{dt^2} + 6t\frac{dy(t)}{dt} + 2y(t) = x^2(t)$$

b) Obtain the convolution of a given pulse x(t) with itself.

$$x(t) = \begin{cases} 1, & -1 \le t \le 1 \\ 0, & otherwise \end{cases}$$
 8 M

3. a) Find the Fourier transform of

8 M

- i) Gate function ii) Signum function.
- b) i) Find the trigonometric Fourier series of the function

$$x(t) = \begin{cases} -A, & -\frac{T}{2} < t < 0 \\ A, & 0 < t < \frac{T}{2} \end{cases}$$

ii) Determine the exponential Fourier series and hence find a_n and b_n of the trigonometric series and compare the results.

8 M

4. a) Find x(t) if its bilateral Laplace transform is

8 M

$$X(s) = \frac{2s - 3}{(s - 2)(s + 3)}, \quad -3 < Re(s) < 2$$

b) Use the convolution theorem of Laplace transform to find $y(t)=x_1(t)*x_2(t)$ for the signals

$$x_1(t) = e^{-3t}u(t), \quad x_2(t) = u(t-2).$$
 8 M

5. a) Determine the impulse response of the system described by the difference equation y(n)=0.6y(n-1)-0.08y(n-2)+x(n).

8 M

- b) State and prove linearity and time shifting properties of discrete time Fourier transform.

 8 M
- 6. a) Determine the inverse Z-transform of the following X(z) by partial fraction expansion method 8 M

$$X(z) = \frac{z+2}{2z^2 - 7z + 3}$$
If ROCs are i) |z| > 3 ii) |z| < \frac{1}{2}
iii) \frac{1}{2} < |z| < 3

b) Find the Nyquist rate and Nyquist interval of the signal $x(t) = 10 \sin 60\pi t \cos 40\pi t$.